Phase separation and superconductivity in Fe(1+x)Te(0.5)Se(0.5).
نویسندگان
چکیده
Fe(1+x)Te(0.5)Se(0.5) is the archetypical iron-based superconductor. Here we show that the superconducting state is controlled by the stacking of its anti-PbO layers, such that homogeneous ordering hinders superconductivity and the highest volume fractions are observed in phase separated structures as evidenced by either a distribution of lattice parameters or microstrain.
منابع مشابه
Nanoscale structure and atomic disorder in the iron-based chalcogenides
The multiband iron-based superconductors have layered structure with a phase diagram characterized by a complex interplay of charge, spin and lattice excitations, with nanoscale atomic structure playing a key role in their fundamental electronic properties. In this paper, we briefly review nanoscale structure and atomic disorder in iron-based chalcogenide superconductors. We focus on the Fe(Se,...
متن کاملPhase diagram of Fe1+y(Te1-xSex): evolution from antiferromagnetism to superconductivity
Iron chalcogenide Fe1+y(Te,Se) is the simplified version of Fe-based superconductors [1,2] and has a unique antiferromagnetic (AFM) structure in the parent compound [3,4]. In iron pnictides the propagation direction of the SDW-type AFM order is along the edge of the Fe square lattice [5-7], while the AFM order in chalcogenide Fe1+yTe propagates along the diagonal direction of the Fe square latt...
متن کاملDevelopment of a ferromagnetic component in the superconducting state of Fe-excess Fe1.12Te1-xSex by electronic charge redistribution
The general picture established so far for the links between superconductivity and magnetic ordering in iron chalcogenide Fe1+y(Te(1-x)Sex) is that the substitution of Se for Te directly drives the system from the antiferromagnetic end into the superconducting regime. Here, we report on the observation of a ferromagnetic component that developed together with the superconducting transition in F...
متن کاملKFe2Se2 is the parent compound of K-doped iron selenide superconductors.
We elucidate the existing controversies in the newly discovered K-doped iron selenide (K(x)Fe(2-y)Se(2-z)) superconductors. The stoichiometric KFe(2)Se(2) with √2 × √2 charge ordering was identified as the parent compound of K(x)Fe(2-y)Se(2-z) superconductor using scanning tunneling microscopy and spectroscopy. The superconductivity is induced in KFe(2)Se(2) by either Se vacancies or interactin...
متن کاملInterplay between superconductivity and magnetism in Fe(1-x)Pd(x)Te.
The attractive/repulsive relationship between superconductivity and magnetic ordering has fascinated the condensed matter physics community for a century. In the early days, magnetic impurities doped into a superconductor were found to quickly suppress superconductivity. Later, a variety of systems, such as cuprates, heavy fermions, and Fe pnictides, showed superconductivity in a narrow region ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemical communications
دوره 47 40 شماره
صفحات -
تاریخ انتشار 2011